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Abstract—On a game day, sports stadiums are filled with:
50,000+ fans; medical, security, media, and venue personnel; and,
the teams’ coaches, players, and staff. It is thus an opportunity
to research, design, test, and integrate many innovative sensing
and communication systems. The Smart Stadium VIP team at
Georgia Tech focuses on these opportunities during football
games in Bobby Dodd Stadium. Our fundamental work in
wireless sensor networks, cognitive radio networks, machine
learning for play classification, and fan infotainment results in
IoT and other systems that are designed and deployed in the
stadium. Most importantly, all of our work is integrated, as a
large-scale system, to improve fans’ experiences of the game. This
paper reports on the status of our research and the testbed and
describes our goals for the future.

Index Terms—mobile apps, wireless sensor networks, peer-to-
peer communications, machine learning, commercialization

I. INTRODUCTION

Almost every fan and staff member at a football game has
a smartphone that has cellular, WIFI, and Bluetooth connec-
tivity. Their phones also have accelerometers, microphones,
cameras, and other sensors. The media organizations have
high-definition video cameras, two-way radios, wireless links
with reporters on the sidelines, etc. Each team often has its
own wireless system to enable coaches on the field to talk
with team personnel elsewhere in the stadium.

A stadium nowadays has infrastructure to handle the short-
term but very large demands for communication and sensing
from all of the people and systems at the game. It will have a
distributed antenna cellular system, hundreds of WiFi access
points, and bluetooth systems for sensing, tracking and short-
range communications. It will soon have sensors for structural
monitoring, localization of RF sources in the stadium [1], and
audio monitoring of the venue for safety and other purposes.

Thus, in just 1 square kilometer, large sporting events
have wireless communication and sensing potential of greater
complexity than found almost anywhere else. They are thus
an ideal environment in which to study and integrate these
systems to produce the Smart Stadium of the future.

Fig. 1. Logo created by teammate Ryan Rodriguez for the Smart Stadium©

VIP team [2].

We have thus developed the Smart Stadium testbed at
Georgia Tech’s Bobby Dodd stadium. This paper describes
the systems in this testbed and discusses future enhancements.
This testbed is unique because its systems are integrated with
each other to enable new applications and capabilities:

• An enhanced wireless sensor network to measure how
the stadium responds to crowd activities: Section II.
These measurements enable both structural monitoring
and characterization of the level of excitement of the
fans. They are shared with our other systems for fan
infotainment [3] and games in our new FANPLAY app.

• Our previously developed system [4] for enabling fans’
on-demand access to any of the annotated video clips of
plays collected as the game progresses.

• FANPLAY: A new suite of games for fans for entertain-
ment before, during and after the game: Section III. Some
of these games utilize the measure of fan excitement from
the wireless sensor network. This suite will next include
peer-to-peer games based on the clustered communication
architectures in [5] [6].

• A system, designed via machine learning and stochastic
modeling of play sequences, to automate the matching of
video clips of plays with their appropriate annotation for
the infotainment application in [4]: Section IV.

Our long-term goal is the commercialization of this system.
In Section V, we describe the activities, such as surveys of fans,



Fig. 2. Smart Stadium full system diagram.

that will identify strategies for monetizing the Smart Stadium
system.

Success in these efforts is made possible by the Vertically
Integrated Projects (VIP) Program [7]. The long-term, large-
scale, multidisciplinary teams created by this program enable
ambitious projects to be completed [8] [9].

II. SENSOR NETWORK

The SensorNet is a wireless IoT testbed with the goal of
collecting data on fan interaction as well as monitoring a
stadium’s structural health. The system was last tested in 2016
and has been under a software and hardware design overhaul.

TABLE I
SENSORNET TERMS

Term Definition

SensorMote Wireless node deployed below stadium seating to
capture sensor data

Cluster A set of SensorMotes plus a base station to forward
data to a server

Coordinator
Depricated, mictocontroller-driven decive used
for hosting an access point for the previously-

deployed SensorNet

ClusterHead Base station hosting an access point and servers
to interface with SensorMotes

Hypeness Measure of fan excitement

A. Microcontroller and Network Updates

This overhaul was originally incited by hardware restrictions
of the deployed microcontrollers. As stated in [3], the system

tested in 2016 was limited to collecting vibrations on 2 axes
(excluding the z-axis) due to a lack of analog-to-digital con-
verter (ADC) pins on the Texas Instruments MSP430F5438A
[10].

The SensorNet development team decided to transition to
a new set of microcontrollers: the TI MSP-EXP432P401R,
equipped with 24 ADC compatible pins and compatability
with the CC3120MOD network card. The new wireless com-
munication protocol being used is now Wi-Fi, as opposed to
the previously implemented Zigbee system [10]. This, along
with the newly available 32-bit timers on the MSP432, allow
for better sync across the system, leading to better excitement
measuring and capability to use other sensors such as one for
audio later in the future.

The accelerometer of choice for testing the new system is
the EVAL-ADXL354BZ, chosen due to the ultra-low noise
spectral density (22.5 ug/Hz) to capture relatively small vibra-
tions from stadium movement. A signal conditioning amplifier
is placed before the ADC pins to boost the output range of
the ADXL from 1.8 V to 3.3V, the expected reference voltage
set by the MSP432.

B. Quality of Life and Ease of Use Improvements

Development has begun on a website for users to schedule
SensorNet data collection. This website, using PHP with
Envoy, will take in requested settings and communicate with
all ClusterHeads to configure and schedule a start time for
data collection. A user will be able to enter settings for the
Cluster as well as add new nodes to the system. Cluster



specific parameters include cluster number, period of time
to collect data, and sleep time. SensorMote node parameters
include application type (ex. vibration or audio data), data
sampling rate, and sample count per WiFi packet. The website
will be deployed on AWS and act as both a private portal
for team admins to configure sensors, as well as a publicly
facing website to display our work, sensor statuses, and other
information.

The previous system was fully manual in its update and
management process, requiring a full redeployment, and this
was a major pain point for maintenance of the system. As a
new feature, the team has been exploring over-the-air (OTA)
updates for the SensorMotes. This system would allow for
remote firmware updates, removing all manual steps in man-
aging the system with the exceptions of initial deployment
and hardware updates. The OTA update process works by
partitioning the onboard memory in two: one for the previous
firmware, and one for SHA integrity-confirmed, extracted
firmware downloaded over a WiFi network. The SensorMote
will then attempt to reboot pointing at the secondary memory
partition and, if successfully rebooted, mark the previous
firmware for overwrite during the next OTA update. If the
reboot fails, the SensorMote will fall back to the previously
functional firmware and continue operations until the OTA
update is reattempted at a later point. The OTA update process
is based on an example provided by TI for the MSP432s. Cur-
rently, the pre-WiFi component is complete with automation
for the compilation of device firmware and packaging into the
required .tar format. On event in the Git Repo, Git Actions
have been configured to trigger the pre-WiFi component and
notify ClusterHeads that an OTA update is ready for the
SensorMotes. At the same time, the packaged OTA update
will be transferred onto the ClusterHead to allow for the
SensorMotes to pull the update down across the existing
access point. However, there are blocking issues related to the
SensorMote’s ability to correctly pull the packaged update.
Solutions to this are currently in development, but as a result,
the OTA update process is not yet fully functional. OTA update
theory of operation can be seen in Fig. 3.

Data collection servers have been transitioned from a local
MySQL server onsite to using AWS, storing both raw ac-
celerometer data and calculated hypeness data [10] [3]. By
leveraging cloud databases, the data collected by the Sensor-
Net can be widely accessible and removes the requirement
for onsite or self-hosted servers to manage the data load. The
goal of connecting the website to these databases is for future
features including a graphical representation of SensorMote-
collected data on the website and using hypeness data to drive
some of the FanPlay application’s minigames.

III. FANPLAY APPLICATION

The Smart Stadium team has deployed several applications
in the past that relate to the fan experience. One previous
project was a web application that fetched data from a service
from CBS Sports that provided real time game data in the
form of text descriptions of plays and game statistics [3].

Fig. 3. SensorNet OTA updates procedure.

Members of the team would then manually link descriptions
of plays with play recordings. The Machine Learning project
is a continuation of this work.

Our current focus is FanPlay, a mobile application devel-
oped by Smart Stadium for use in athletic stadia during events.
Our application currently includes several games for fans to
play during athletic events as well as leaderboards. In the
future, we also plan to have social features that allow fans
in the stadium to connect with each other.

Behind the entertainment, social interaction, and games, we
wish to stress the wireless communication networks in the
stadium, and FanPlay is how we plan to do this. There is no
better way to stress the network than by monitoring the effects
of thousands of phones connecting to the networks. We also
wish to collect information about the sensor network in the
stadium using FanPlay.

During football games, thousands of people connect to a
wireless network inside of the stadium at once. In our stadium,
the sensors that we have deployed are also connected to this
same network. This has the potential to stress the network and
cause issues. We wish to learn more about these issues and
learn how WiFi networks in small and medium-sized stadiums
can handle abnormally large loads. This would provide insight
for colleges, universities, high schools, basketball arenas, and
many other environments.

We have a selection of games available for fans. The
Prediction Game allows fans to predict the outcomes of athletic
events, and they get points if their prediction is correct. Field
Goal Frenzy is a simple game where players use their fingers
to “kick” field goals and earn points. FanIQ is a trivia game
where players answer questions and earn points.

One game that utilizes the sensor network is Hypemeter.



Fig. 4. FanPlay main menu for minigame selection. (shown horizontally)

This game allows all fans in the stadium to “compete” against
each other. In essence, we are asking people in the stadium
to get as loud and rowdy as they can, and our SensorNet will
collect this information. We condense the information from
the sensors into a “hype” value that can be narrowed down to
specific sections of the stadium. The hype value is generated
with the hypeness algorithm in [3].

Fig. 5. Hypemeter game structure.

Another game that would use the SensorNet is Stadium
Symphony. This game uses a configuration similar to Hy-
pemeter, relying on fans to generate hype in the stadium.
The stadium would participate in a musical game similar to
Guitar Hero where individual sections generate hype at the
correct times to hit musical notes and score points. The game
would be displayed on fans’ smartphones and the jumbotron.
In addition to this, we have configured our server to accept
accelerometer readings from individual mobile phones. We
have not yet decided what we are going to do with this data,
but it is an interesting data set to study.

We are also experimenting with the facilitation of multi-
player games, comparing utilization of external cloud servers
to connections via Bluetooth or another wireless peer-to-
peer (P2P) protocol. The P2P approach is promising because
it gives us a lot more insight into how the stress on the
wireless communication network in the stadium is impacted
by the number of people connected to each other, especially
since Bluetooth can interfere with 2.4GHz WiFi. This should
presumably reduce the load on the stadium’s wireless network
during games, and free up capacity for other uses.

Another goal of the FanPlay app is to facilitate a means of
social interaction amongst event attendees. We wish to allow
people to connect to each other and exchange information
while they are using our app in the stadium. Attendees will

be able to share information like major, hometown, graduation
year, greek affiliation, and other characteristics.

IV. MACHINE LEARNING

Complementing the fan engagement accomplished by the
FanPlay application, the advanced analytics projects bridge
the gap between gameplay and reported statistics along with
developing innovative scouting strategies for the team. One
such problem we are studying is: Can play classifications be
done accurately using machine learning? Today, annotating
each football play required several man-hours. If play anno-
tations can be automated with minimal human intervention, it
will help reduce the cost and increase user experience where
we have labor shortage.

Our work incorporates elements of play videos and previous
play data to create a deep learning model that combines the
neural network feature vectors derived from play clips with a
Markov Chain model of play sequences to classify the current
play type: run, pass, field goal, etc. Results on Smart Stadium’s
machine learning work has been submitted for publication
[11]. This topic is found to be of interest to the sports related
machine learning research community [12].

The Smart Stadium team has procured a large dataset that
includes high-definition videos of 5,647 Georgia Tech home-
game plays manually recorded by the team over a decade,
and statistical data from 56,496 play annotations in XML files
created by the NCAA. The play annotations serve as ground
truth for training our model. We have used GPU and high-
memory nodes on Georgia Tech’s PACE High Performance
Computing center [13] to train and test our model. The
model is based on the deep-learning shown in Fig. 6. It
leverages transfer learning from well-established computer
vision Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) networks for extracing the feature
vectors out of the video clips. For bench-marking, this standard
base model, when trained/tested on the entire dataset, is able
to classify plays with accuracies of [82.84, 88.56, 69.9, 70.83,
52.48] for [Kickoff, Run, Pass, ExtraPoint/FieldGoal, Punt].
The overall accuracy being 79.65%.

Major contributions in our work include the following items,
further explained below:

• Understanding the outliers in play-by-play videos and
labeling them for more accurate training.

• Creating a Markov Chain (MC) model for play prediction
using the play annotations from previous plays.

• Exploring methodologies to combine the neural network
and the Markov chain knowledge network to create the
best Fusion model.

Data Clean-up: Identifying and cleaning defective data
points is critical to machine learning. In analysing our play
videos, we have identified 15 different error types, including
video recording errors, very rare plays (i.e., an interception
returned for a touchdown), plays obscured by ads, plays that
started early or late in the video clip, etc. While some video
clips can be fixed where the recording started too early, certain
other where no play occurred or the recording started during



Fig. 6. Computer Vision Neural Network Model Flow Chart; [P = Pass, R = Run, X/F = Extra Point/Field Goal, U = Punt, K = Kickoff].
We consider a frame of the play clip for each of the first 15 seconds; Run the frames on the pre-trained ResNet50 architecture: 50 layer optimized convolutional
neural network; Obtain output of feature vectors; Pass in feature vectors to the Long Short Term Memory Neural Network which outputs our final 5-class
probability vector.

the play cannot be fixed and need to be purged from the
dataset. After removing the defective clips, which reduced the
dataset from 5,647 plays to 4,722 plays, the performance of
the model improved by 2% to [85.96, 86.85, 70.33, 80.00,
59.79] with a total accuracy of 81.8%.

MC model: The 56,496 plays from the NCAA XML files
are used to create a Markov Chain (MC) by extracting the state
transition probabilities from real-world data. We have parsed
XML files from 277 GT football games from 2000 to 2021 to
extract statistics and play data for each play corresponding to
the video clip. The MC state comprises of these 4 factors:

• Down (4): [1-4]
• Type (7): [Run, Pass, PAT, Field Goal, Punt, Kickoff,

Other]
• Field Position (10): 100 yard field divided into 10 10-yd

buckets on the home side: [0,9], [10,19] . . . [40,50] and
opposition side: [50,40], [39,30] . . . [9,0]

• Distance to first down (6): [1,3], [4,6], [7,9], [10,14],
[15,19], [20,99]

This gave us 4 * 7 * 10 * 6 = 1680 distinct possible states
for a play in a game, yielding a 1680x1680 state transition
matrix. Aggregate vectors are added for each row of the matrix
that gives a probability vector of each play state leading to a
[Run, Pass, PAT, Field Goal, Punt, Kickoff, Other]. This MC
model is combined with the base Neural Network model to
augment it with the game state information. The system is
realistic since previous play sequences would be determined
during the live game for which our system is running, and our
goal is to classify the current play given previous plays.

Fusion model: We have explored four different ways of
combining the NN results with the MC model. 1) We used
thresholding and weighted sum of the prediction probabilities
form the two models to produce a new probability vector. 2)
We added the past play encoding as an input in addition to
the 30x2048 video clip data to our LSTM network model. 3)

We built a simple Sequential Network consisting of multiple
Dense layers which takes in the result vectors of the LSTM
model and the Markov Model. This approach faced a sample
size issue since we could only use the probability outputs
from the test set of the LSTM Neural Network when training
the new network that combines the predictions. 4) We built
a monolithic Neural Network, incorporating all of the play
clips and corresponding MC state information spliced into
the final dense layers. Table II compares the performance of
these fusion methodologies. As seen, method 4 performs the
best with individual accuracies of [89.29, 89.65, 83.42, 87.36,
83.10] and an overall average accuracy of 87.26%. This is an
increase of nearly 7.6% from the original full-data base model
accuracy. Each of these approaches are explained in further
detail in the Stadium-IoPT machine learning paper [11].

TABLE II
TABLE COMPARING THE ACCURACY OF THE 4 FUSION MODELS

Kickoff Run Pass XP/FG Punt Total
MF 1 88.1 79.7 70.07 71.43 76.84 76.6
MF 2 82.14 88.31 76.33 85.71 69.47 83.1
MF 3 86.9 86.16 73.78 87.36 77.46 84.05
MF 4 89.29 89.65 83.42 87.36 83.1 87.26

The overall increases in accuracy with the above strategies
is shown in Fig. 7. The significant increase in performance
of the neural network when integrated with a Markov chain
model shows that a knowledge network capturing the context
of a play in addition to raw video data plays a vital role
in the prediction. Our future work on this problem include:
1) Exploring other computer vision models beyond transfer
learning for the deep neural network component. 2) Including a
broader range of dataset using play videos from other colleges
and NFL for achieving generalization. 3) Obtaining more play
data that can enhance the accuracy of transition probabilities
within the Markov Chain. 4) Exploring conflation techniques



Fig. 7. Comparison of the best iteration of the Neural Network, Binary
Classification Model, Markov Chain, and our best attempt at Model Fusion.

to combine the prediction probabilities from machine learning
and knowledge network models.

V. COMMERCIALIZATION

A goal of our project is commercialization of the Smart Sta-
dium system. We have looked into patents [14] for the FanPlay
app and for the SensorNet or machine learning systems [15]
to determine that we are not violating any existing patents. We
are also planning to conduct demos of and surveys about the
FanPlay app to gauge interest in it within Georgia Tech.

Fig. 8. Business Card with copyrighted Smart Stadium Logo and QR Code.

We believe the FanPlay apps will improve the game day
experience for all attendees of Georgia Tech’s athletic events.
The demos and surveys will determine if this is true and
help us gauge the best monetization method for the system.
For example: (1) a willingness of fans see ads allows us to
monetize FanPlay by sponsorships or inclusion of freemium
content; (2) the FanPlay app could be offered as a free perk
to incentivize purchase of Season Tickets.

We also plan to market the SensorNet technology to sports
facilities, entertainment venues, fairs, and other places where
crowds gather. We would license the rights to implement the
technologies mentioned in this paper to organizations which
would also bring in revenue through contracts. The possible
valuations of the SensorNet are still in research by our team.

CONCLUSION

We described the current state of and future plans for
the Smart Stadium testbed at Georgia Tech. The systems we
developed show the many opportunities for innovation in an

environment that is similar to what integrated communication
and sensing systems will be like everywhere in the future.
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